Additional sources and materials
- Bar-Hillel, Carnap, 1953 – Bar-Hillel, Y., Carnap, R. “Semantic information”, The British Journal for the Philosophy of Science, 1953, Vol. 4, No. 14, pp. 147–157.
- Cresswell, 1982 – Cresswell, M.J. “Urn models: A classical exposition”, Studia Logica, 1982, Vol. 41, No. 2–3, pp. 109–130.
- Floridi, 2004 – Floridi, L. “Outline of a theory of strongly semantic information”, Minds and machines, 2004, Vol. 14, No. 2, pp. 197–221.
- Freire, 2015 – Freire, R.A. “First-order logic and first-order functions”, Logica Univer- salis, 2015, Vol. 9, No. 3, pp. 281–329.
- Hintikka, 1965 – Hintikka, J. “Distributive normal forms in first-order logic”, in: Stud- ies in Logic and the Foundations of Mathematics, Elsevier, 1965, Vol. 40, pp. 48–91. Hintikka, 1970a – Hintikka, J. “Information, deduction, and the a priori”, Nous, 1970,pp. 135–152.
- Hintikka, 1970b – Hintikka, J. “Surface information and depth information”, in: Information and inference, Springer, 1970, pp. 263–297.
- Hodges, 1997 – Hodges, W. A shorter model theory. Cambridge university press, 1997. Mendon ̧ca, 2018 – Mendon ̧ca, B.R. Traditional theory of semantic information without scandal of deduction, PhD Thesis, Unicamp, 2018. http://repositorio.unicamp.br/handle/REPOSIP/332305.
- Olin, 1978 – Olin, P. “Urn models and categoricity”, Journal of Philosophical Logic, 1978, Vol. 7, No. 1, pp. 331–345.
- Rantala, 1975 – Rantala, V. “Urn models: a new kind of non-standard model for firstorder logic”, in: Game-Theoretical Semantics, Springer, 1975, pp. 347–366.
- Tulenheimo, 2018 – Tulenheimo, T. “Independence friendly logic”, in: The Stanford Encyclopedia of Philosophy, ed. by E.N. Zalta, Metaphysics Research Lab, Stanford University, fall 2018 edition, 2018.
Comments
No posts found